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ABSTRACT 
 

A new reduced order model to simulate the dynamics of natural 
circulation features in current and next generation of nuclear power plants 
has been developed. Dynamical analysis this new natural circulation BWR 
model that allows local pressure dependence of water saturation enthalpy 
and includes fundamental and first azimuthal modes for neutronics is carried 
out. Stability boundaries (SBs) and 7.5% oscillation curves (representing 
natures of bifurcation along SBs) are plotted in inlet subcooling—external 
reactivity parameter space. Stability and bifurcation analyses show that, both 
in-phase and out-of-phase oscillations as well as supercritical and subcritical 
bifurcations can occur along the SBs.  

 
 
1. Introduction 
 

Natural circulation is a promising design feature for next generation of BWRs. Safety and 
economics of the nuclear reactors can be improved through simplicity and passive features of 
the natural circulation design [1]. 

One of the primary concerns for safe operation of BWRs is stability. Both natural and 
forced circulation BWR systems, however, are susceptible to nuclear coupled density wave 
oscillations (DWOs) under certain adverse operating conditions [2]. DWOs can be either 
in-phase or out-of-phase type [3]. The former corresponds to global power and flow 
oscillations, and is excited by fundamental neutronic mode. The latter corresponds to regional 
oscillations (usually power of half of the core oscillates out-of-phase against the other half) , 
and is an outcome of the first azimuthal mode. For natural circulation systems, experiments 



 

and analytical studies show other instability mechanisms besides DWOs. An important one of 
these is flashing-induced oscillation during start-up. Flashing that is boiling in the unheated 
riser above the core, is caused due to local pressure drop. Flashing occurs most frequently 
under low system pressure during start-up. Jiang et al. [4] indicated that “the maximum void 
fraction caused by flashing is about 5% under a system pressure of 1.5 MPa, and about 80% 
under 0.1 MPa.” 

Several experimental studies of the two-phase natural circulation system have been 
reported [5-7]. Although a few analytical studies [4, 8-9] have been carried out for natural 
circulation systems, they are limited in scope due to one or more of the following reasons: 

• Many existing system codes are not designed to analyze natural circulation system. 
Those suitable to analyze the flashing phenomenon are too cumbersome for 
parametric studies. 

• Existing reduced order models are too simplistic. Hence, some key features of 
system dynamics may be lost. 

• There are limited reduced-order analyses of coupled models of thermal-hydraulics, 
fuel dynamics and neutronics. 

Taking advantage of the two-mode neutronics and sophisticated fuel dynamics model, first 
developed by Karve et al [10], we present stability and bifurcation analyses of a two channel, 
nuclear-coupled, natural circulation BWR model. Two-phase thermal-hydraulics model is 
based on one we reported earlie r. This model has been used to study the stability of two-phase 
natural circulation system (without neutronics) [11].  

Reduced order model is presented in Section 2. A brief review of our approach for the 
stability and bifurcation analysis of the reduced order model is also given. Results of stability, 
bifurcation and numerical simulations are presented in Section 3, and the last section 
concludes the paper. 
 
2. Reduced Order Model 
 
2.1 Thermal-Hydraulic Model 

The system considered in the model is shown in Figure 1. It is comprised of two heated 
channels (each of which represents a half of the core), two separate risers above the channels 
and a common down comer. A system pressure is imposed by setting the pressure at outlet of 
the risers, exitP  to a fixed value. Some additional system parameters are also shown in the 
Figure 1.  
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Fig. 1   Schematic plot of natural circulation system 
 



 

The thermal-hydraulic model is based on the following two assumptions: 
• Saturation enthalpy varies linearly with local pressure. Other thermal properties of 

water and steam are constant. 
• Two phase flow can be modelled by Homogeneous Equilibrium Model (HEM) 

Although better assumptions such as quadratic pressure dependence and non-equilibrium 
two-phase flow models can be applied, they will greatly increase complexity and decrease 
computational efficiency of the model. 

Three cases, based on the location of the boiling boundary, are considered separately. 
These are shown in Figures 2a, 2b and 2c. For case 1, water enthalpy at the core exit is less 
than the saturation enthalpy, and flashing occurs in the riser. For case 2, because of relatively 
large heat input, water starts boiling in the core. Case 3 is a degenerate case, in which water 
enthalpy is less than the saturation value at the channel exit, but greater at the entrance of the 
riser due to local pressure loss. 

Non-dimensional forms of continuity, energy and momentum partial differential equations 
are used to derive the dynamical system. Note that pressure dependence of water saturation 
enthalpy leads to modified forms of energy and momentum equations [12]. A weighted 
residual approach is employed to reduce the PDEs to a set of ODEs. Single phase and 
two-phase regions along the core and riser are discretized by arbitrary numbers of equal-sized 
nodes. In each node, spatially linear trial functions with time-dependent parameters for 
enthalpy (saturated or unsaturated), steam quality, and mixture velocity are introduced. ODEs 
for these time-dependent expansion parameters are derived by integration along the node. 
Boiling boundary and its derivative are evaluated by applying the fixed pressure condition at 
the outlet of riser. Details of the derivations can be found in reference [12]. 
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Fig. 2   Profiles of water enthalpy and saturation enthalpy for the three cases: 2a) case 1; 2b) 
case 2; 2c) case 3.  

 
2.2 Fuel Dynamics and Neutronics Model 

The fuel dynamics and neutronics models of Karve et al. [10] are used to couple with the 
thermal-hydraulic model. These models retain many key elements of the dynamics of BWR 
systems, such as gap heat conduction between fuel pellet and cladding and different heat 
convection coefficients for single-phase and two-phase regions, yet are sufficiently simple for 
large scale parametric analyses. A piece -wise quadratic expansion with time-dependent 
parameter is used to represent temperature profiles in the fuel pellet. ODEs of time-dependent 
parameters are obtained by application of the variational principle. The neutron and precursor 
densities are represented by fundamental and first azimuthal modes with time-dependent 



 

coefficients. ODEs for the four neutronics variables (n0, u0, n1, and u1) are derived through the 
? -mode approach. Retaining the first azimuthal mode in the model allows the simulation of 
out-of-phase oscillations. ODEs of thermal-hydraulic model and fuel dynamic and neutronics 
model are coupled via heat flux (represented by )(tN pch , which is a non-dimensional number 
proportional to the total heat flux inputted into the channel), αc , the void reactivity feedback 
coefficient, and Dc , the fuel Doppler reactivity feedback coefficient. 
 
2.3 Poincaré -Andronov-Hopf Bifurcation (PAH-B) Theory and BIFDD 

Stability of fixed points of a set of autonomous ODEs, such as those of reduced order 
model of BWRs, is determined by its eigenvalue of the Jacobian at the steady-state. If the real 
parts of all the eigenvalues are negative, the fixed point is stable, otherwise, unstable. This 
result is further extended by PAH-bifurcation theory [13], which states that if the right-most 
eigenvalues are a complex conjugate pair and they cross the imaginary axis with non-zero 
speed as an operating parameter is changed, there will be periodic solutions (oscillations) in 
the vicinity of the SB. Frequencies and amplitudes of the periodic solutions are determined by 
the imaginary parts of the eigenvalues and the distance of the operating point from the SB. In 
particular, the periodic solutions can be either stable, called supercritical PAH-B, or unstable, 
called subcritical PAH-B. From the safety point of view, subcritical PAH-B is more 
problematic than supercritical PAH-B, since in the former case the unstable periodic solution 
exists on the stable side of the SB, and given large enough perturbation the system even when 
operating on the stable side of the SB may evolve into growing amplitude oscillations.  

In this study (as in several previous studies), a stability and bifurcation analysis code  
BIFDD [14] is utilized to analyze the natural circulation BWR model. Given analytic forms of 
ODEs and Jacobian, BIFDD evaluates SBs as well as the nature of bifurcation along them. 

 
3. Results 
 
3.1 Effect of Nodalization Schemes 

Coupling among the thermal-hydraulics, fuel dynamics and neutronics introduces extra 
feedbacks, which are crucial to the dynamics of the system. However, accurate evaluations of 
the feedback signals, the void fraction in the channel and fuel temperature rely on 
nodalization scheme described in section 2.1. The higher the number of nodes in each 
single-phase or two-phase region, the more accurate is the estimate of the void fraction and 
fuel temperature. Large number of nodes on the other hand dramatically increase the number 
of phase variables, leading to computational inefficiency. Therefore, an analysis of the impact 
of the number of nodes on the results of the stability analysis is carried out first. 

Stability boundaries (SBs) are calculated by BIFDD for different nodalization schemes in 
the so-called subcooling—reactivity parameter space (Figures 3 and 4) for parameter values 
that roughly correspond to the Dodewaard natural circulation BWR. System pressure of these 
two calculations are exitP = 7.0 MPa and exitP  = 0.4 MPa, respectively. Here, the x axis, extρ , 
is the external reactivity introduced by control rod movement. The y axis, inletT∆ , is the inlet 
subcooling (saturation temperature minus inlet temperature). Different nodalization schemes 
are characterized by N, which is the number of nodes in each (single phase and two-phase) 
region.  

Figure 3 shows that at high system pressure, as the number of nodes increases, the SBs 
converge, but insufficient nodalization may cause large deviation in both the area of stable 
regions and in the shapes of SBs from those obtained using sufficiently large number of nodes. 
Compared to the SB of N = 16 case, the one with N = 1 significantly over-estimates the area 
of the stable  region. As N is increased, the SBs tend to converge. Good convergence of SB is 
achieved in regions of low and high extρ  for the N = 8 case, but the SB may be 



 

over-estimated by as much as 10% in the middle range of extρ .  
For the low system pressure case (0.4 MPa), Figure 4 shows a much better convergence. 

Even the SB for the N = 4 case is very close to that of the converged SB. SBs for the N = 8 
and N = 16 cases are too close for most values of extρ  to be distinguished from each other. 
Results presented in the rest of the paper were obtained using N = 8. 
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Fig. 3  SBs for different size nodes in inletT∆ — extρ  parameter space for exitP = 7.0 MPa 
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Fig. 4  SBs for different size nodes in inletT∆ — extρ  parameter space for exitP = 0.4 MPa 

 
3.2 In-Phase and Out-Of-Phase Oscillations  

A parameter space is divided into stable and unstable regions by a stability boundary. In the 
unstable region at lease one (real or complex conjugate pair) eigenvalues has positive real part. 
Figure 5 and 6 show SBs (solid lines) in inletT∆ — extρ  space for system pressure of 7.0 MPa 
and 0.4 MPa, respectively. Nature of instability that results, as these SBs are crossed, may 



 

however vary significantly along different parts of the SB. As shown earlier for forced 
circulation BWR system, the two rightmost pair of eigenvalues can be associated with 
in-phase and out-of-phase oscillations [15]. The relative magnitude of the elements in the 
corresponding eigenvectors indicate as to which mode—fundamental or first azimuthal—will 
become unstable as that eigenvalue crosses the imaginary axis. It was shown that the 
eigenvalue pair that corresponds to the first azimuthal mode may cross the imaginary axis 
before the eigenvalue that correspond to the fundamental mode [15]. Hence, even for the 
natural circulation system it is important that along with the SB a second “boundary”—along 
which the second pair of complex conjugate eigenvalue has zero real part—be also plotted. 
Relative magnitude of the elements in the eigenvector can then be used to identify whether it 
is the in-phase or the out-of-phase mode that will become unstable as the SB is crossed. 
Figures 5 and 6 also show the “second” boundaries (doted lines), on which the real part of the 
second largest pair of eigenvalue is zero. For low system pressure (Figure 6), the two curves 
do not cross, and the boundary for the azimuthal mode is always in the unstable region, where 
the fundamental mode is unstable. However, Figure 5 shows that the boundary corresponding 
to the largest eigenvalue for the fundamental mode and that corresponding to the first 
azimuthal mode cross each other at point X ( extρ = -0.0335, inletT∆ = 8.65 K). Hence, the SB is 
comprised of a segment along which the stability is lost due to the fundamental mode (to the 
right of point X) and a small segment (to the right of point X) along which the first azimuthal 
mode is crossed.  
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Fig. 5  SB and boundary of the second largest real part when exitP  = 7.0 MPa 



 

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
0

1

2

3

4

5

6

7

43
**

III

II

I

F

E

D

 Stability boundary
 Boundary of the 2nd largest real part

Unstable

Stable∆
T

in
le

t (K
)

ρ
ext

 
Fig. 6  SB and boundary of the second largest real part when exitP  = 0.4 MPa 

 
Characteristic difference of oscillations associated with the eigenvalues of the largest and 

the second largest real parts is further illustrated by analyzing the eigenvalues and the 
corresponding eigenvectors at four points on the SBs and the boundaries of the second largest 
real parts. Point 1 ( extρ = -0.0278, inletT∆ = 20.0 K) and point 2 ( extρ = -0.0306, inletT∆  = 20.0 
K) are on the stability map of system with exitP = 7.0 MPa; point 3 ( extρ  = 0.0124, inletT∆  = 
2.0 K) and point 4 ( extρ  = 0.0179, inletT∆  = 2.0 K) are on the stability map of system with 

exitP  = 0.4 MPa. Table 1 lists the pure imaginary eigenvalues of the Jacobian imagE  and 
magnitudes of elements corresponding to )(0 tn and )(1 tn , 

0nEV  and 
1nEV  in the eigenvectors 

at these points. [Here, )(0 tn  is the time-dependent coefficient of the fundamental neutron 
mode, and )(1 tn  is the time-dependent coefficient of the first azimuthal mode.]  

 
Table 1   imagE , 

0nEV  and 
1nEV  at four operating points shown in Figure 5 and 6 

 
 Point 1 Point 2 Point 3 Point 4 

imagE  ±2.306 i ±1.709 i ±3.030 i ±4.079 i 
0nEV  0.156 0.170×10-11 0.00972 0.110×10-13 

1nEV  0.943×10-12 0.0595 0.324×10-13 0.00530 
 
For the points on the SB (points 1 and 3), the magnitude of )(0 tn  is much larger than those 

of )(1 tn ; for the points on the boundaries corresponding to eigenvalue with the second largest 
real parts (point 2 and 4), the magnitude of )(1 tn  is much larger than that of )(0 tn . Results 
listed in the Table 1 suggest very large amplitudes of oscillations of )(0 tn , but much smaller 
amplitudes of oscillations of )(1 tn  corresponding to the pure imaginary eigenvalues at 
operating points 1 and 3. The pure imaginary eigenvalues at these two points, thus, are called 
in-phase or fundamental mode eigenvlaues. Similarly, amplitudes of oscillations of )(1 tn  are 
very large, while those of )(0 tn  are very small at operating points 2 and 4. These eigenvalues 
are hence called out-of-phase or azimuthal mode eigenvlaues. Therefore, a characteristics 
change in the nature of oscillation must be expected due to eigenvalue crossing at point X 
(Figure 5). To the left of point X, segment A-X is the SB due to out -of-phase oscillations. To 
the right of point X, segment X-B-C is the SB due to in-phase oscillations. 



 

Parameter space in Figure 5 is divided by these boundaries of fundamental and first 
azimuthal mode eigenvalues into four regions. In region I, both the fundamental and first 
azimuthal modes are stable. Small perturbation will cause decreasing amplitude oscillations. 
In region II, the fundamental mode is unstable and the first azimuthal mode is stable. Small 
perturbation will lead to in-phase oscillations. In region III, the first azimuthal mode is 
unstable and the fundamental mode is stable. The oscillations are therefore out-of-phase. In 
the last region (IV), both modes are unstable. Oscillations are therefore a combination of 
in-phase and out-of-phase modes.  

For low system pressure, instead of four regions, three regions of the parameter space are 
identified. Both modes are stable in region I; fundamental mode is unstable and first 
azimuthal mode is stable in region II; and both modes are unstable in region III (Figure 6).  

 
3.3 Bifurcation Analyses 

In addition to in-phase and out-of-phase, the oscillation in a BWR can also be characterized 
by whether they evolve to stable periodic oscillation or to unstable growing amplitude 
oscillation [13]. As discussed in section 2.3, PAH bifurcation theorem provides us with 
conditions that lead to on or the other. According to PAH-B theorem, if the periodic solution 
(oscillation) is in unstable region, its amplitude is stable and the bifurcation is supercritical; if 
it is in stable region, the amplitude is unstable and the bifurcation is subcritical. Nature of 
PAH-B (supercritical or subcritical) along the SB can be represented by fixed amplitude 
oscillation curves. Figure 7 and 8 show 7.5% oscillation curves for different segments of the 
SBs of Figure 5 and 6 in inletT∆ —( extρ – criticalext,ρ ) parameter space. The amplitude of 
oscillations of the limit cycle along these curves is about 7.5% of the magnitude of 
eigenvector elements. In Figure 7a, for the out -of-phase segment A-X, the oscillation curve is 
in the unstable region, indicating a supercritical PAH-B along the SB. From the out-of-phase 
segment (A-X) of the SB to in-phase segment X-B, oscillation curve has a jump from the 
unstable side to the stable side. For inletT∆  < 28.91 K, the oscillation curve of segment X -B is 
in the stable region, and type of PAH-B is subcritical. For 28.91 < inletT∆  < 31.42 K (point B), 
the oscillation curve returns to the unstable region, and consequently type of PAH-B along 
this segment of the SB is supercritica l. For segment B-C, Figure 7c show that oscillation 
curve along the B-C branch is always in the unstable region. Type of PAH-B along this 
segment is hence supercritical. Similar back-and-forth transitions from sub- to supercritical 
bifurcations are observed for the low system pressure case. In Figure 8a, the type of 
bifurcation is supercritical along the D-E branch of the SB. Along the E-F branch of the SB 
(Figure 8b), when inletT∆  > 2.762 K, the bifurcation is supercritical; while for inletT∆  < 2.762 
K, it is subcritical. 
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Fig. 7   7.5% oscillation curve along three segments of the SB in Figure 5 
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Fig. 8  7.5% oscillation curve along two segments of SB in the Figure 6 
 
For the out-of-phase segment A-X (Figure 7a) and low inletT∆  region of the in-phase 

segment B-C (Figure 7c), deviation of extρ  required for the 7.5% amplitude, are much 
smaller than those for the segment X-B and high inletT∆  region of the segment B-C, indicating 
that much larger amplitude oscillations (in -phase or out-of-phase) may result for the same 
deviation along the SB of low subcooling than along that of high subcooling. Large amplitude 
oscillation at lower inlet subcooling is due to longer two-phase regions in the channel and 
riser. Similar trend can be found in the low system pressure case (Figure 8).  

The change of characteristics of bifurcation (supercritical or subcritical) and change of 
characteristics of oscillations (in-phase or out-of-phase) along the SB, thus, reveal complexity 
of the dynamic behavior of the coupled natural circulation BWR system. 

 
3.4 Sensitivity Analysis for Low System Pressure Case 

Effect of operating parameters other than inletT∆ and extρ  on the SBs is investigated. Since behavior 
of two-phase natural circulation systems under high system pressure conditions (close to 7.0 MPa) is 
relatively better understood, we focus on sensitivity of operating parameters when the system pressure is 
relatively low. To study effect of system pressure, we plot SBs in inletT∆ — extρ  parameter space for five 
different values of exitP  (Figure 9a). Impact of a change in exitP  on systems with relatively large 
pressure ( exitP  = 1.5, 1.0 MPa) is different from that on systems at low pressure ( exitP  = 0.4, 0.3, 0.2 
MPa). Stable region decreases as exitP  decreases if the system pressure is relatively high, especially for 
small values of extρ . Thus, a drop in exitP  has a destabilizing effect under these conditions. If the system 
pressure is relatively low, however, a drop in exitP  causes the stable region to increase. Therefore, instead 
of destabilizing, it has a stabilizing effect on the dynamics of the system. Comparing these results with 
those of pure thermal-hydraulics model [12], where a drop in system pressure is a destabilizing factor, this 
new stabilizing effect can be attributed to the coupling between system thermal-hydraulics and neutron 
kinetics. At low system pressure, without neutronics coupling, small perturbation can quickly grow due to 
two-phase flow instability. In the coupled system, however, void fraction feedback acts as a stabilizing 
force. Perturbations in void fraction lead to negative feedback of reactivity, which suppresses 
thermal-hydraulic perturbations.  
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Fig. 9  Sensitivity analysis results for different operating parameters. Out-of-phase oscillation SBs are 
indicated by OP. A change in slope of the SB indicates transition to in-phase SB. 

 
Figure 9b shows the effect of riser length rL , for exitP  = 0.4 MPa case. In natural circulation system, 

increasing rL  increases the driving force leading to higher flow rate. Therefore, it has a strong stabilizing 
effect. However, Figure 9b also shows that out-of-phase oscillations are possible at low reactivity for long 
risers. Effect of pressure loss coefficient at riser outlet outrk ,  is not as strong as those for exitP  and rL  
(Figure 9c), but SBs indicate the possibility of out-of-phase oscillations for low reactivity if outrk ,  is high. 
Figure 9d shows the effect of an increase in pressure loss at the outlet of the core. Increasing outck ,  
generally tends to cause a loss of stability. The last operating parameter studied is the pressure loss 
coefficient at the channel inlet, inck , . As shown in Figure 9e, increasing of inck ,  has a strong stabilizing 
effect. 

 
3.5 Numerical Simulations 

Numerical simulations are carried out to gain further insight into the dynamics of the coupled system 
as well as to examine the results obtained using BIFDD. Eight points on the stability maps of high and 
low pressure systems are chosen for numerical simulations. These points are shown in Figures 10a and 
10b. Table 2 lists operating parameters as well as characteristics of bifurcation and nature of oscillations 
(in-phase or out-of-phase) predicted by BIFDD. 

 



 

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02

0

5

10

15

20

25

30

35  Pexit = 7.0 MPa

OP

edc

ba

***

*

Unstable

Stable

*

∆
T in

le
t (

K
)

ρ
ext

 
10a 

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
 Pexit = 0.4 MPa

hg

f

**

Unstable

Stable
*

∆T
in

le
t (

K
)

ρ
ext

 
10b 

Fig. 10  Operating points for numerical simulations in the SBs, 10a) exitP  = 7.0 MPa; 10b) exitP  = 
0.4 MPa 

 
Table 2  Operating points for numerical simulations 

 
 exitP  (MPa) extρ  inletT∆  (K) Characteristics 

of oscillations 
Characteristics 

of PAH-B 
Point a 7.0 -0.03413 6.0 Out-of-phase Supercritical 
Point b 7.0 -0.03400 6.0 Out-of-phase Supercritical 
Point c 7.0 -0.02781 20.0 In-phase Subcritical 
Point d 7.0 -0.00840 20.0 In-phase Supercritical 
Point e 7.0 -0.00823 20.0 In-phase Supercritical 
Point f 0.4 0.01237 2.0 In-phase Subcritical 
Point g 0.4 -0.02570 3.8 In-phase Supercritical 
Point h 0.4 -0.02540 3.8 In-phase Supercritical 

 
Points a and b are close to out-of-phase segment of the SB in Figure 10a. Point a is in the unstable 

region, while point b is in stable region. Bifurcation along this segment of the SB is supercritical. Figure 
11 shows results of numerical simulation for parameter values corresponding to point a. As expected, 
stable amplitude limit cycle of )(1 tn  and very small amplitude of )(0 tn  result. Figure 12 (for point b) 
shows decreasing amplitude oscillations for both )(0 tn  and )(1 tn . Points c, d and e are close to in-phase 
segment of the SB. Bifurcation at point c is subcritical; while those for points d and e are supercritical. 
Figure 13, corresponding to point c, shows increasing amplitude of )(0 tn  (and decaying )(1 tn ) for large 
perturbation even though point c is in the stable region consistent with the subcritical nature of the 
bifurcation. For point d (in stable region) and e (in unstable region), perturbations lead to decreasing 
amplitude oscillations (point d) and stable limit cycle oscillations (point e) for )(0 tn  while decreasing 
amplitude oscillations result for )(1 tn  in both cases (Figure 14 and 15).  

For the case of low system pressure, Figures 16, 17, and 18 show that oscillations at points f, g, and h 
are in-phase as suggested by the stability analysis. Large perturbation at point f, which is in the stable 
region, causes increasing amplitude oscillation consistent with the subcritical bifurcation there. 
Perturbations at point g (unstable region), and h (stable region) cause limit cycle and decreasing 
amplitude oscillations, respectively, for )(0 tn . Numerical simulations of system with high and low 
system pressures agree with predictions of BIFDD satisfactorily. 
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Fig. 11  Time evolutions of )(0 tn  and )(1 tn  at point a in Figure 10a 
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Fig. 12  Time evolutions of )(0 tn  and )(1 tn  at point b in Figure 10a 
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Fig. 13  Time evolutions of )(0 tn  and )(1 tn  at point c in Figure 10a after large amplitude 
perturbation. System is stable for small amplitude perturbations 
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Fig. 14  Time evolutions of )(0 tn  and )(1 tn  at point d in Figure 10a 
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Fig. 15  Time evolutions of )(0 tn  and )(1 tn  at point e in Figure 10a 
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Fig. 16   Time evolutions of )(0 tn  and )(1 tn  at point f in Figure 10b after large amplitude 
perturbation. System is stable under small amplitude perturbations 
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Fig. 17  Time evolutions of )(0 tn  and )(1 tn  at point g in Figure 10b 
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Fig. 18  Time evolutions of )(0 tn  and )(1 tn  at point h in Figure 10b 
 

 
4. Summary 

 
A new natural-circulation BWR model that allows local pressure dependence of water saturation 

enthalpy and includes fundamental and first azimuthal modes for neutronics has been developed. ODEs 
of this model are derived through weighted residual and variational principle approaches. A nodal-size 
sensitivity analysis shows that proper nodalization is important to accurately capture the SB. Both 
in-phase and out-of-phase oscillations as well as supercritical and subcritical bifurcations can occur along 
the SBs for both high and low system pressures. Sensitivity analysis of various operating parameters is 
also carried out. It is shown that increasing system pressure may lead to a more stable or a less stable 
system depending upon the value of the absolute system pressure. Increasing pressure loss coefficient at 
the outlet of core or riser has a destabilizing effect, while increase of pressure loss coefficient at the core 
inlet has a stabilizing effect. Numerical simulation results confirm findings of stability and bifurcation 
analyses. 
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